33 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Площадь треугольника по трем сторонам онлайн калькулятор. Как найти площадь треугольника

Калькулятор площади треугольника по трем сторонам

Удобная навигация по статье:

Калькулятор площади треугольника по трем сторонам

Как рассчитать площадь треугольника

Как известно, треугольником принято называть плоскую геометрическую фигуру, многоугольник, который ограничен минимальным количеством сторон. Также, стоит помнить, что всякий многоугольник делится на определённое количество треугольников.

Для этого необходимо соединить его вершины такими отрезками, которые не пересекали бы его стороны. Вот почему, зная как рассчитать площадь треугольника, Вы можете получить площадь большинства геометрических фигур.

Формула Герона для вычисления площади треугольника по трем сторонам

В том случае если нам известны параметры каждой стороны нашего треугольника, мы можем рассчитать площадь фигуры по формуле Герона. Для её упрощения следует применить новую величину, так называемый полупериметр, который является суммой всех сторон треугольника, которая разделена пополам.

После получения значения полупериметра, Вы можете приступать к расчёту площади по руководствуясь следующей формулой: S = sqrt(p(p-a)(p-b)(p-c)), в которой «p» – полупериметр, «a,b,c» – стороны фигуры и sqrt –квадратный корень.

Пример вычисления площади треугольника по трем сторонам

Рассмотрим на примере вычисление площади треугольника по формуле Герона.

Читать еще:  "Русские ночи" (Одоевский): описание и анализ романа. Владимир Одоевский: Русские ночи

p = ( a + b + c)/ 2 где p – половина периметра треугольника.

таким образом S = √ p ( p – a ) ( p – b ) ( p – c ) .

(Это также называется формулой Герона)

Дано:

Треугольник со сторонами a = 4, b = 5, c = 3.

Задание:
Найдите площадь треугольника

Решение:

Используйте формулу половинного периметра:

p = ( 3 + 4 + 5)/ 2 = 6

Полученные значения подставляем в формулу Герони:

S = √ 6 ( 6 – 3 ) ( 6 – 4 ) ( 6 – 5 ) =

√ 6 ⋅ 3 ⋅ 2 ⋅ 1 = √ 36 = 6

Ответ: 6

Историческая справка

Формула приписывается Герону, живущему в Александрии, который был греческим инженером и математиком в 10 – 70 годах нашей эры

Среди прочего, он разработал первый известный паровой двигатель, но его рассматривали как игрушку!

Как вычислить площадь треугольника. Видео.

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона

Формула Герона для нахождения площади треугольника:

Через основание и высоту

Формула нахождения площади треугольника с помощью половины его основания и высоту:

Через две стороны и угол

Формула нахождения площади треугольника через две стороны и угол между ними:

Через сторону и два прилежащих угла

Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:

Площадь прямоугольного треугольника

Прямоугольный треугольник — треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

Площадь равнобедренного треугольника через стороны

Равнобедренный треугольник — треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

Площадь равнобедренного треугольника через основание и угол

Формула нахождения площади равнобедренного треугольника через основание и угол:

Площадь равностороннего треугольника через стороны

Равносторонний треугольник — треугольник, в котором все стороны равны, а каждый угол равен 60°.

Читать еще:  Человек паук нуар комикс читать. Биография персонажей игры Spider-Man: Shattered Dimensions

Формула нахождения площади равностороннего треугольника через сторону:

Площадь равностороннего треугольника через высоту

Формула нахождения площади равностороннего треугольника через высоту:

Площадь равностороннего треугольника через радиус вписанной окружности

Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

Площадь равностороннего треугольника через радиус описанной окружности

Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

Площадь треугольника через радиус описанной окружности и три стороны

Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

Площадь треугольника через радиус вписанной окружности и три стороны

Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

Калькулятор позволяет онлайн найти площадь треугольника прямоугольного, равнобедренного, равностороннего и разностороннего различными способами.

Калькулятор позволяет онлайн найти площадь треугольника разностороннего , треугольника прямоугольного , треугольника равнобедренного , треугольника равностороннего различными способами и выводит формулы с подробным решением.

  • 1. Разносторонний треугольник:
  • 1.1. по основанию и высоте: площадь треугольника равна произведению половины основания на его высоту;
  • 1.2. по двум сторонам и углу между ними: площадь треугольника равна половине произведения его сторон на синус угла между ними;
  • 1.3. по четырем сторонам (формула Герона): площадь треугольника равна корню из произведения разностей полупериметра треугольника и каждой из его сторон;
  • 1.4. по радиусу вписанной окружности и трем сторонам: площадь треугольника равна произведению полупериметра на радиус вписанной окружности;
  • 1.5. по радиусу описанной окружности и трем сторонам: площадь треугольника равна одной четвертой отношения произведения сторон на радиус описанной окружности.
  • 2. Прямоугольный треугольник:
  • 2.1. по основанию и высоте: площадь прямоугольно треугольника равна половине произведения катетов треугольника;
  • 2.2. по отрезкам на которые делит гипотенузу вписанная окружность: площадь прямоугольно треугольника равна произведению произведению отрезков на которые делит гипотенузу вписанная окружность;
  • 2.3. по четырем сторонам (формула Герона): площадь прямоугольно треугольника равна произведению разностей полупериметра треугольника и каждой его катетов.
  • 3. Равнобедренный треугольник:
  • 3.1. по боковым сторонам и углу между ними: площадь равнобедренного треугольника равна половине произведения квадрата боковой стороны на синус угла между боковыми сторонами;
  • 3.2. по боковой стороне, основанию и углу между боковыми сторонами и основанием: площадь равнобедренного треугольника равна половине произведения боковой стороны и основания на синус угла между ними;
  • 3.3. по основанию и углу между боковыми сторонами и основанием: площадь равнобедренного треугольника равна четверти отношения квадрата основания на тангенс половинного угла между боковыми сторонами.
  • 4. Равносторонний треугольник:
  • 4.1. по стороне: площадь равностороннего треугольника равна произведению одной четвертой корня из трех на квадрат стороны;
  • 4.2. по радиусу описанной окружности: площадь равностороннего треугольника равна произведению трех четвертей корня из трех на квадрат радиуса описанной окружности;
  • 4.3. по радиусу вписанной окружности: площадь равностороннего треугольника равна произведению трех корней из трех на квадрат радиуса вписанной окружности.
  • 4.4. по высоте: площадь равностороннего треугольника равна отношению квадрата высоты к корню из трех.
Читать еще:  Тем для разговора с девушкой. О чем поговорить с девушкой во время прогулки, в социальных сетях, по телефону
  • Источники:

    http://fox-calculator.ru/matematica/kalkulyator-ploshhadi-treugolnika-po-trem-storonam/
    http://www.mozgan.ru/Geometry/AreaTriangle
    http://cae-cube.ru/on-line-kalkulyator-raschet-ploshchadi-treugolnika.html

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector