Корреляционный анализ спирмена, практический трейдинг в примерах. Применение корреляции Спирмена и Пирсона
КОЭФФИЦИЕНТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА
Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.
Чарльз Эдвард Спирмен
1. История разработки коэффициента ранговой корреляции
Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом, английским психологом, профессором Лондонского и Честерфилдского университетов.
2. Для чего используется коэффициент Спирмена?
Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей. В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя – например, при сопоставлении роста пациента и его массы тела), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого – например, при сопоставлении возраста и частоты сердечных сокращений), то говорят об обратной связи между показателями.
-
Коэффициент корреляции Спирмена обладает следующими свойствами:
- Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
- Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
- Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
- Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.
3. В каких случаях можно использовать коэффициент Спирмена?
В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.
Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).
Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.
4. Как рассчитать коэффициент Спирмена?
Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:
- Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или убыванию.
- Определить разности рангов каждой пары сопоставляемых значений (d).
- Возвести в квадрат каждую разность и суммировать полученные результаты.
- Вычислить коэффициент корреляции рангов по формуле:
Определить статистическую значимость коэффициента при помощи t-критерия, рассчитанного по следующей формуле:
5. Как интерпретировать значение коэффициента Спирмена?
При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее – показателями слабой тесноты связи; значения более 0,4, но менее 0,7 – показателями умеренной тесноты связи, а значения 0,7 и более – показателями высокой тесноты связи.
Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи – отсутствует. Если больше, то корреляционная связь считается статистически значимой.
Корреляционный анализ спирмена, практический трейдинг в примерах. Применение корреляции Спирмена и Пирсона
Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.
Назначение сервиса . С помощью данного онлайн-калькулятора производится:
- расчет коэффициента ранговой корреляции Спирмена;
- вычисление доверительного интервала для коэффициента и оценка его значимости;
Коэффициент ранговой корреляции Спирмена относится к показателям оценки тесноты связи. Качественную характеристику тесноты связи коэффициента ранговой корреляции, как и других коэффициентов корреляции, можно оценить по шкале Чеддока .
Расчет коэффициента состоит из следующих этапов:
Свойства коэффициента ранговой корреляции Спирмена
Область применения . Коэффициент корреляции рангов используется для оценки качества связи между двумя совокупностями. Кроме этого, его статистическая значимость применяется при анализе данных на гетероскедастичность .
Пример . По выборке данных наблюдаемых переменных X и Y:
- составить ранговую таблицу;
- найти коэффициент ранговой корреляции Спирмена и проверить его значимость на уровне 2a
- оценить характер зависимости
Решение. Присвоим ранги признаку Y и фактору X .
Изменения случайных величин
Импортировать данные Ошибка импорта
Для разделения полей можно использовать один из этих символов: Tab, “;” или “,” Пример: -50.5;-50.5
Импортировать Назад Отменить
Метод расчета коэффициента ранговой корреляции Спирмена на самом деле описывается очень просто. Это тот же самый Коэффициент корреляции Пирсона , только рассчитанный не для самих результатов измерений случайных величин, а для их ранговых значений .
Осталось только разобраться, что такое ранговые значения и для чего все это нужно.
Если элементы вариационного ряда расположить в порядке возрастания или убывания, то рангом элемента будет являться его номер в этом упорядоченном ряду.
Например, пусть у нас есть вариационный ряд <17,26,5,14,21>. Отсортируем его элементы в порядке убывания <26,21,17,14,5>. 26 имеет ранг 1, 21 – ранг 2 и т.д. Вариационный ряд ранговых значений будет выглядеть следующим образом <3,1,5,4,2>.
То есть, при расчете коэффициента Спирмена исходные вариационные ряды преобразуются в вариационные ряды ранговых значений, после чего к ним применяется формула Пирсона.
Есть одна тонкость – ранг повторяющихся значений берется как среднее из рангов. То есть для ряда <17, 15, 14, 15>ряд ранговых значений будет выглядеть как <1, 2.5, 4, 2.5>, так как первый элемент равный 15 имеет ранг 2, а второй – ранг 3, и .
Если же повторяющихся значений нет, то есть все значения ранговых рядов – числа из диапазона от 1 до n, формулу Пирсона можно упростить до
Ну и кстати, эта формула чаще всего и приводится как формула расчета коэффицента Спирмена.
В чем же суть перехода от самих значений к их ранговым значениям?
А суть в том, что исследуя корреляцию ранговых значений можно установить насколько хорошо зависимость двух переменных описывается монотонной функцией.
Знак коэффициента указывает на направление связи между переменными. Если знак положительный, то значения Y имеют тенденцию увеличиваться при увеличении значений X; если знак отрицательный, то значения Y имеют тенденцию уменьшаться при увеличении значений X. Если коэффициент равен 0, то никакой тенденции нет. Если же коэффициент равен 1 или -1, то зависимость между X и Y имеет вид монотонной функции – то есть, при увеличении X, Y также увеличивается, либо наоборот, при увеличении X, Y уменьшается.
То есть, в отличие от коэффициента корреляции Пирсона, который может выявить только линейную зависимость одной переменной от другой, коэффициент корреляции Спирмена может выявить монотонную зависимость, там, где непосредственная линейная связь не выявляется.
Поясню на примере. Предположим, что мы исследуем функцию y=10/x.
У нас есть следующие результаты измерений X и Y
<<1,10>, <5,2>, <10,1>, <20,0.5>, <100,0.1>>
Для этих данных коэффициент корреляции Пирсона равен -0.4686, то есть связь слабая либо отсутствует. А вот коэффициент корреляции Спирмена строго равен -1, что как бы намекает исследователю, что Y имеет строгую отрицательную монотонную зависимость от X.
Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.
На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии – это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной
Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y – это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.
Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.
Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция __________не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.
Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате – коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.
Коэффициенты корреляции Спирмена и τ-Кендалла (ранговые корреляции)
Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них – в порядковой, а другая – в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ-Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.
Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.
Если члены группы численностью были ранжированы сначала по переменной x, затем – по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.
Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.
Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.
Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений.
Альтернативу корреляции Спирмена для рангов представляет корреляция τ-Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает – то об отрицательной связи.
Мой секрет
Корреляционный анализ спирмена, практический трейдинг в примерах
Студента-психолога (социолога, менеджера, управленца и др.) нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых группах.
В математике для описания связей между переменными величинами используют понятие функции F, которая ставит в соответствие каждому определенному значению независимой переменной X определенное значение зависимой переменной Y. Полученная зависимость обозначается как Y=F(X).
При этом виды корреляционных связей между измеренными признаками могут быть различны: так, корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна – если с увеличением или уменьшением одной переменной X,вторая переменная Y в среднем либо также растет, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами.
Корреляция будет положительной, если с увеличением переменной X переменная Y в среднем также увеличивается, а если с увеличением X переменная Y имеет в среднем тенденцию к уменьшению, то говорят о наличии отрицательной корреляции. Возможна ситуация, когда между переменными невозможно установить какую-либо зависимость. В этом случае говорят об отсутствии корреляционной связи.
Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.
Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:
где n – количество ранжируемых признаков (показателей, испытуемых);
D – разность между рангами по двум переменным для каждого испытуемого;
D2 – сумма квадратов разностей рангов.
Критические значения коэффициента корреляции рангов Спирмена представлены ниже:
Величина коэффициента линейной корреляции Спирмена лежит в интервале +1 и -1. Коэффициент линейной корреляции Спирмена может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.
Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной X будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными Х и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.
Знак коэффициента корреляции очень важен для интерпретации полученной связи. Если знак коэффициента линейной корреляции – плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.
Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания – произволен. Это может быть как переменная X, так и переменная Y. Однако если считается, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот.
Рассмотрим пример корреляции Спирмена.
Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.
Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в таблице:
Подставляем полученные данные в вышеприведенную формулу, и производим расчет. Получаем:
Для нахождения уровня значимости обращаемся к таблице «Критические значения коэффициента корреляции рангов Спирмена,» в которой приведены критические значения для коэффициентов ранговой корреляции.
Строим соответствующую «ось значимости»:
Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью – иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н0) гипотезу о сходстве и принять альтернативную (Н1) о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.
Корреляция спирмена. Корреляционный анализ по методу спирмена. Ранги спирмена. Коэффициент корреляции Спирмена. Ранговая корреляция Спирмена
Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.
1. История разработки коэффициента ранговой корреляции
Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом , английским психологом, профессором Лондонского и Честерфилдского университетов.
2. Для чего используется коэффициент Спирмена?
Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей . В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя – например, при сопоставлении роста пациента и его массы тела ), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого – например, при сопоставлении возраста и частоты сердечных сокращений ), то говорят об обратной связи между показателями.
-
Коэффициент корреляции Спирмена обладает следующими свойствами:
- Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
- Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
- Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
- Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.
3. В каких случаях можно использовать коэффициент Спирмена?
В связи с тем, что коэффициент является методом непараметрического анализа , проверка на нормальность распределения не требуется.
Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).
Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.
4. Как рассчитать коэффициент Спирмена?
Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:
5. Как интерпретировать значение коэффициента Спирмена?
При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее – показателями слабой тесноты связи; значения более 0,4, но менее 0,7 – показателями умеренной тесноты связи, а значения 0,7 и более – показателями высокой тесноты связи.
Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи – отсутствует. Если больше, то корреляционная связь считается статистически значимой.
Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.
Величина коэффициента корреляции Спирмена также лежит в интервале +1 и -1. Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.
В принципе число ранжируемых признаков (качеств, черт и т.п.) может быть любым, но сам процесс ранжирования большего, чем 20 числа признаков — затруднителен. Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n
Источники:
http://medstatistic.ru/theory/spirmen.html
http://lugasat.ru/heart-failure/korrelyacionnyi-analiz-spirmena-prakticheskii-treiding-v.html
http://welom.ru/korrelyacionnyi-analiz-spirmena-prakticheskii-treiding-v/